A Framework to Provide Personalization in Learning Management Systems through a Recommender System Approach
نویسندگان
چکیده
Personalization in learning management systems (LMS) occurs when such systems tailor the learning experience of learners such that it fits to their profiles, which helps in increasing their performance within the course and the quality of learning. A learner’s profile can, for example, consist of his/her learning styles, goals, existing knowledge, ability and interests. Generally, traditional LMSs do not take into account the learners’ profile and present the course content in a static way to every learner. To support personalization in LMS, recommender systems can be used to recommend appropriate learning objects to learners, not only based on their individual profile but also based on what worked well for learners with a similar profile. In this paper, we propose a framework to integrate a recommender system approach into LMS. The proposed framework is designed with the goal of presenting a flexible integration model which can provide personalization by automatically suggesting learning objects to learners based on their current situation as well as successful learning experiences of learners with similar profiles in a similar situation. Such advanced personalization can help learners in many ways such as reducing the learning time without negative impact on their marks, improving learning performance as well as increasing the level of satisfaction.
منابع مشابه
Providing a model based on Recommender systems for hospital services (Case: Shariati Hospital of Tehran)
Background and objectives: In the increasingly competitive market of the healthcare industry, the organizations providing health care services are highly in need of systems that will enable them to meet their clients' needs in order to achieve a high degree of patient satisfaction. To this end, health managers need to identify the factors affecting patient satisfaction focus. T...
متن کاملEvaluation of recommender systems: A multi-criteria decision making approach
The evaluation and selection of recommender systems is a difficult decision making process. This difficulty is partially due to the large diversity of published evaluation criteria in addition to lack of standardized methods of evaluation. As such, a systematic methodology is needed that explicitly considers multiple, possibly conflicting metrics and assists decision makers to evaluate and find...
متن کاملA Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis
Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...
متن کاملImproving the performance of recommender systems in the face of the cold start problem by analyzing user behavior on social network
The goal of recommender system is to provide desired items for users. One of the main challenges affecting the performance of recommendation systems is the cold-start problem that is occurred as a result of lack of information about a user/item. In this article, first we will present an approach, uses social streams such as Twitter to create a behavioral profile, then user profiles are clusteri...
متن کاملA New WordNet Enriched Content-Collaborative Recommender System
The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...
متن کامل